TANDBERG TR 2075 MkII /TR2080 Service Manual # Contents | Page | e | |--|---| | Changing and cleaning P/B selectors (switches) | 2 | | Mechanical service | 3 | | AM alignment procedure | 4 | | AM circuit diagram | 5 | | FM alignment procedure | 6 | | FM circuit diagram — Stereo decoder diagrams | 9 | | RIAA/input — P/B selectors, circuit diagram | 1 | | Pre-Amp/Filter — Mode/Filter, circuit diagram | 3 | | Power-Amplifier, circuit diagram | 5 | # CHANGING OR CLEANING PUSH BUTTON SWITCHES Occasionally the push button switches will need to be cleaned and lubricated to maintain trouble free action. A good cleaning agent should be applied sparingly with a fine brush. We recommend "Tandberg Klüberfett" or "Wählerfett" from our Service Department. Alcohol or methylated spirit may also be used for cleaning, and vaseline may be used for lubrication afterwards. NOTE! Avoid touching the contacts with your finger — it could cause corrosion. Avoid using cleaning agents that could attack the metal parts. NOTE! We have developed our own cleaning/ lubricating agent, "Tandberg Contact Spray" in aerosols, and we recommend it for all types of contacts. These aerosols can be supplied from our district offices and subsidiary companies. NOTE! Slide switches (mode selectors) are available complete as a replacement part. If necessary, the switch can be cleaned, and the plunger or the contact unit can be changed. For these operations the switch must be dismantled. ## DISMANTLING THE PLUNGER - Pull the spring slightly forward so that the locking clip is free at the edge. - Use tweezers as shown in the figure. - Press the plunger right in. Push the locking clip backwards and lift it up. NB! The locking pin lies loose in the locking clip. The plunger can be pulled out. NB! The spring contact on the plunger are loose. The spring is slightly conical so that if you remove it from the plunger, take care to replace it with the smallest end against front of the plunger. # OUTPUT TRANSISTORS When changing the output transistors you should remove the complete corrugated heat sink for the channel in question. - 1. Remove the 2 screws in the heat sink from underneath. - 2. Pull the heat sink up. NOTE! Q914 will come with the heat sink as it is pulled up, but the thermal fuse will remain hanging on the AF board. NOTE! When assembling the output transistors we recommend to use "Thermal Compound Wakefield" on both sides of the mica washer. See Figure. The compound can be obtained from our Service Dept. Use ordering No. 340245. We do not recommend the use of "Silicon grease". If you must use Silicon grease, do not get it on the solder joints. FM STEREO FLAT-NOSE LAMP PLIERS FM STEREO LAMP NOTE! The lamp unit and its lead are designed to be separated from the scale lamp board by a snap action. - 1. Remove the four screws in the scale lamp board. - 2. Loosen the board slightly so that you can insert a pair of flat-nose pliers beside the lamp. See Figure. The scale lamp board and the stereo lamp are separately mounted. NOTE! When removing the complete scale lamp board, you must first remove the screws on the MF/IF Tuner board. ### SCALE DRIVE CORD Before fitting a new drive cord you should loosen the screws on the AM board and pull off the leads so that the board is free. - Turn the pot.meter fully anti-clockwise. - Pull cord end A through hole C from the back side. Pull cord end A until the eyelet on the cord comes out to the front side of hole C. Tape the cord securely as shown in the Figure. - Lay cord end B in slot B in the cord wheel, then lay it in the back groove of the cord wheel and take 1 turn anticlockwise. Tape the cord securely as shown in the Figure. - · Remove the tape from cord end A and lay the cord in slot A in the cord wheel. Then lay the cord in the front groove of the cord wheel and take 4 turns clockwise. Tape the cord again. - Re-assemble the boards and the leads. - Release the ends of the cord from the tape and complete the fitting of the cord as shown in the Figure. - set to the correct position on the scale. nel. oard. panel. away the uner rward. | | | Receiver | Generator | | | Oscilloscope | Fre | |--------------------|---|---------------------|-----------------------------------|------------|---|----------------------------|-----| | Pro | cedure | Frequency | Frequency | Modulation | Applied to M | Connected to M | Con | | | illoscope with
quency counter | | | | | | M2, | | A ^B Osc | cillator | 600 kHz
1400 kHz | 600 kHz
1400 kHz | 30% | * M3 via
dummy ant.
(Fig. 4) | | | | A AM | I-IF with wobbler | 1400 kHz | Wobb.freq.
1400 kHz | Unmodul. | * M3 via
wobbler and
dummy ant.
(Fig. 3-4) | M1, see
circuit diagram | | | AM AM | I-IF without wobbler | 1400 kHz | 1400 kHz | 30% | * M3 via
dummy ant.
(Fig. 4) | | | | 3 and | tenna circuit, ferrite
I HF circuit with
bbler | 600 kHz
1400 kHz | Wobb.freq.
600 kHz
1400 kHz | Unmodul. | * M3 via
wobbler and
dummy ant.
(Fig. 3-4) | M1, see
circuit diagram | | | 3 and | tenna circuit, ferrite
l HF circuit without
bbler | 600 kHz
1400 kHz | 600 kHz
1400 kHz | 30% | * M3 via
dummy ant.
(Fig. 4) | | | | A Sign | nal meter | 1 MHz | 1 MHz | 30% | * M3
at/20 mV | | | Fig. 1 Alignment point, L3 L3 Fig. 2 Ferrite antenna Adjust with ferrite ant. in position as shown in Figure. Fig. 3 Generator and wobbler *N **I | Frequency counter | Circuits Board No. | | Notes | | | |------------------------------------|----------------------------|----|--|--|--| | onnected to M | | | | | | | 42, see
ircuit diagram
- — — | L401
C402 | A4 | If available, use a frequency counter to obtain max. accuracy. Use a calibrated signal generator. NOTE! Check the dial pointer zero position, see Fig. 5. | | | | | L403
L404 | A4 | Adjust for max. curve height. See Fig. 6. The center frequency is determined by the fixed ceramic filter. Adjust for max. output. | | | | | **L3 - L402
C410 - C417 | A4 | Adjust for max. curve height. Adjust for max. output. | | | | | R405 | A4 | Adjust to 15 on TR2075 MK II
Adjust to 10 ² μV on TR2080 | | | ^{*}M3, Antenna input. Fig. 4 Dummy antenna Fig. 5 Adjusting the dial pointer. The end position of the scale cursor. Note! Chech FM scale accuracy. Fig. 6 AM-IF with wobbler Signal applied to M3 via Fig. 3-4. Oscilloscope connected to M1 ^{**}L3, Antenna circuit, ferrite. M3, Ant. input page 4. # ALIGNMENT OF STEREO DECODER # Equipment needed: FM stereo generator Oscilloscope with sensitivity 5 mV/cm Frequency counter Selective voltmeter or a.c. voltmeter and 20 kHz low pass filter. ### The decoder oscillator: 19 kHz Apply a 1 mV signal from the FM stereo generator, unmodulated. (No pilot signal applied.) Adjust R304 so that the frequency counter connected to M301 indicates 19 kHz. Alternative method without the frequency counter: Apply a 1 mV signal from the FM stereo generator, modulation: 10% pilot signal. — Turn R304 slowly from one extreme to the point where the stereo indicator lights up. Turn further in the same direction until the light goes out. Then turn in the opposite direction to set R304 in the middle of the range where the indicator lights. ## Channel separation: Apply a 1 mV signal from the FM stereo generator, modulation: 10% pilot signal. Modulate the right channel with 1 kHz at 30% diviation. Connect the oscilloscope to the TAPE OUT (L) socket. Adjust R323 to minimum deflection on the scope. Check this adjustment with the 1 kHz signal in the left channel and measure the output of the right channel. Alternative method without the stereo generator: Adjust R323 for minimum signal in left (right) speaker when receiving a test FM stereo, transmission with signal in the right (left) channel only. ## Muting and stereo/mono switching threshold: Muting: Apply a 3 µV signal from the FM-generator to the 75 ohm antenna input. Adjust the TUNING METER on the radio to center. Set R231 in the middle position and R229 fully clockwise (seen from component side). Turn R229 slowly counterclockwise until the signal is recovered. # FM alignment procedure | | | Receiver | | Generat | |------------|---------------------|-------------------|-------------------|-----------| | Step | Alignment procedure | Frequency | Frequency | Deviatio | | 5 A | 25 V for varicap | | | | | 5 B | FM oscillator | 90 MHz
105 MHz | 90 MHz
105 MHz | ± 22.5 kl | | 6 | Aerial circuit | 90 MHz
105 MHz | 90 MHz
105 MHz | ± 200 k | | A | FM - IF | 90 MHz | 90 MHz | ± 200 k | | A | Discriminator | 90 MHz | 90 MHz | ± 75 k | | 9 | Center tuning meter | 90 MHz | 90 MHz | ± 75 k | | 10_A
B | Signal meter | 90 MHz | 90 MHz | ± 0 k | Stereo/mono switching threshold: Set R231 fully counter clockwise (seen from component side). Apply 0 µV from the FM stereo generator to the 75 ohm antenna input modulated with 10% pilot signal. Increase the signal from the FM-stereo generator from 0 μV to 7,5 μV . Turn R231 slowly clockwise until the stereo-indicator light comes on. NOTE! The adjustments for muting and stereo/ mono switching threshold interact. Alternative method: Stereo/mono switching threshold: If an FM-stereo generator is not available an ordinary FM-generator can be used for this adjustment. Apply a 7,5 µV signal from the generator to the 75 ohm antenna input, modulated with 10 kHz, deviation 7.5 kHz (10%) (check the modulation frequency with a counter). Proceed as explained above. | rator | | Oscilloscope Circuits | | | | |-------|--------------------|------------------------------------|---|--------------|--| | ion | Applied to M | Connected to M | Adjust | Board
No. | Notes | | | | | R616 | A6 | Meter connected to M13. A6 page 11. Adjust to 25 V d.c. reading. | | 1 77 | | **M4 via diode- | R204 | | Check the position of the scale cursor (see Fig. 11). | | kHz | *M1 | probe. Fig. 10. | C124 | A1 | Check 95 MHz and 100 MHz. | | kHz | *M1 | **M4 via diode-
probe. Fig. 10. | L101-L102-L103
L104,C104-C110
C112-C113 | A1 | Adjust for max. curve heigh (see Fig. 8). | | kHz | *M1 | **M4 via diode-
probe. Fig. 10. | L107-L108 | A1 | Adjust for max. curve height and symmetry (see Fig. 8). FM - IF 10.6 - 10.8 MHz. | | kHz | *M1
1 mV/75 ohm | | L201-L202 | A2 | Dist./voltm. connected to M5, TAPE OUTPUT socket: Adjust L201 for max. output voltage. Afterwards adjust L202 for min. output voltage and min. distortion. | | | | ***M5 | | | See Fig. 9. | | kHz | *M1
1 mV/75 ohm | | R239 | A2 | Adjust for center position of the pointer, when the receiver is tuned to min. distortion. See step 8. | | | No signal. | | R236 | | Adjust to 0 on SIGNAL METER. | | kHz | *M1, 1 mV/75 ohm | | R232 | A2 | Adjust to 20 on TR2075 MK II
Adjust to 10 ³ µV on TR2080 | ^{*} Antenna input (A1) page 9. Fig. 8 FM-IF curve Signal: U_{in} = 150 $\mu V/75$ ohms, f = 90 MHz. Dev. = \pm 200 kHz applied to M1 via ant. plug. Oscilloscope: Vert.: 5mV/div., Hor.: 50 kHz/div. connected to M4 via diodeprobe (Fig. 10). Fig. 9 Discriminator Signal: $U_{in} = 2 \mu V/75$ ohms, f = 90 MHz. Dev. = ± 200 kHz applied to M1 via ant. plug. Oscilloscope: Vert.: 1V/div. Hor.: 50 kHz/div. connected to M5. Fig. 10 Diodeprobe Fig. 11 Adjusting the dial pointer. The end position of the scale cursor. ^{**} See FM-IF Section (A2) page 9. ^{***} See Audio Section 1 (A5) page 11. Fault finding on the FM TUNER Turn the tuner unit up into vertical position. * Remove the screw shown in the figure. Remove the cover. NOTE! The sensitivity measurements mentioned in the circuit diagram were made with a voltage divider in series with the sig. generator for M2, M3, and M4 (see figure below). ### FROM GEN. AC Voltage divider (10:1) NOTE! The leads of the components in the voltage divider must be as short as possible. # THE MEASUREMENTS ARE MADE AS FOLLOWS: C368 F 47n F C368 F 220 F 191 OSC . M5: Out max. AF voltage, reduced by 3 dB. M1: In $0.5 \,\mu V$ from sig. generator, 100% modulation. M5: Out max. AF voltage, reduced by 3 dB. M2: In 130 µV from sig. generator, 100% modulation. M5: Out max. AF voltage, reduced by 3 dB. M3: In 280 µV from sig. generator, 100% modulation. M5: Out max. AF voltage, reduced by 3 dB. M4: In 200 μV from sig. generator, 100% modulation. **NOTE!** There can be a slight spread on the sensitivity measurement figures between different receivers. NOTE! When measuring only the sensitivity between M1 and M5 you can use the TAPE OUT (pin 1 or 4) socket as M5 to avoid dismantling the cabinet. NOTE! When leading a signal from a sig. generator into the circuit, connect the generator positive and negative lead across the IC. The transistors are seen from underneath. A5 RIAA/ INPUT AMP. # A6 PROGRAM SELECT/ VOLTAGE REG. Seen from the component side. "Pops" when switching the POWER OFF. See page 15. # A6 PROGRAM SELECT/ VOLTAGE REG. Seen from the solder side. # A7 PREAMPLIFIER Seen from the component side. # A8 MODE/FILTER Seen from the component side. # A7 PREAMPLIFIER Seen from the solder side. The transistors are seen from underneath. # A8 MODE/FILTER Seen from the solder side. All selectors are shown in unoperated position. # A13 POWER READING The transistors are seen from underneath. # A9 POWER AMPLIFIER Seen from the component side # A9 POWER AMPLIFIER Seen from the solder side NOTE! BE SHURE TO REPLACE SAME TYPE OF COMPONENT! ## POWER READING Output power indicator (SIGNAL meter). Depress the button POWER REANING. Apply a signal to TAPE 1 input and measure the a.c. voltage across the speaker output. ### TR2075 MK II Adjust the input voltage or the VOLUME until the output voltage is 25 volts. Adjust R985 for the same reading on the SIGNAL meter. ### TR2080 Adjust the input voltage or the VOLUME until the output voltage is 20 volts. Adjust R985 to 50 (W) on the SIGNAL meter. # AF - ADJUSTMENTS. ## Quiescent current. The most convenient place to connect the voltmeter is between the top of emitter resistors R957/R959 (left channel) and R958/R960 (right channel) on the component side of the board. After 10 minutes warm—up (with the volume control in minimum position), the voltage should be 40 mV. If necessary, adjust with R931 (left channel) and R932 (right channel). "Pops" when switching the POWER OFF, to Serial No. 1465417. R974, 470K, replace with 100K. - * R985, 470K, remove. - ** R621, 10K, new. - ** R622, 10K, new. - ** C618, 0,1µF, new. ** Solder R621, R622 and C618 on to the solder side on board A6, see page 10. Cut the foil between the legs on R621.